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Lightlike hypersurfaces of Lorentzian manifolds
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Abstract

We first study the properties of the lightlike mean curvature on a lightlike hypersurface in a
Lorentzian manifold. Then, we show the existence of a large class of lightlike hypersurfaces ad-
mitting a distinguished screen and study some of their properties. In particular, we find integrability
conditions for distinguished screen distributions and give applications in a spacetime which obeys the
null energy condition.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that in a semi-Riemannian manifold there are three causal types of
submanifolds: spacelike (Riemannian), timelike (Lorentzian) and lightlike (degenerate),
depending on the character of the induced metric on the tangent space. In the third case,
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due to the degeneracy of the metric, basic differences occur between the study of lightlike
submanifolds and the classical theory of Riemannian and semi-Riemannian submanifolds
(see, for example,[1–3,6,8,11]).

Lightlike submanifolds (in particular, lightlike hypersurfaces) are interesting in general
relativity since they produce models of different types of horizons (event horizons, Cauchy’s
horizons, Kruskal’s horizons). The idea that the Universe we live in can be represented as
a four-dimensional submanifold embedded in a (4+ d)-dimensional spacetime manifold
has attracted the attention of many physicists. Higher dimensional semi-Euclidean spaces
should provide a theoretical framework in which the fundamental laws of physics may
appear to be unified, as in the Kaluza–Klein scheme. Lightlike hypersurfaces are also
studied in the theory of electromagnetism (see, for example,[3, Chapter 8], and several
others sited therein).

In this paper, we study an (n+ 1)-dimensional lightlike hypersurface (M,g), n ≥ 2,
of a (n+ 2)-dimensional Lorentzian manifold (̄M, ḡ), whereg is a degenerate metric on
M, induced by the Lorentzian metric ¯g of M̄. We use the notations and some needed
results from[3, Chapter 4]. In the lightlike hypersurface case, basic differences occur
mainly due to the fact that the normal vector bundleTM⊥ is same as the null tan-
gent bundle along a non-zero differentiable radical distributionRad(TM) of M, defined
by

Rad(TxM) = TxM
⊥ = {ξx ∈ Tx(M) : g(ξx,X) = 0, X ∈ Tx(M)},

wheredim(Rad(TM)) = 1. There exists a Riemannian screen distribution, denotedS(TM),
on M which is complementary to the radical distribution such that we have the orthogonal
direct sum

TM = TM⊥ ⊕ S(TM). (1)

Throughout this paper, we denote byF(M) the algebra of differentiable functions onM
andΓ (E) theF(M)-module of differentiable sections of a vector bundleE over M. The
manifolds we consider are supposed to be paracompact, smooth and connected. There-
fore, the existence ofS(TM) is secured. However, in general,S(TM) is not canonical
(thus not unique) and the lightlike geometry depends on its choice. It is, therefore, im-
portant to look for a screen distribution with good properties. The objective of this paper
is to study a set of distinguished structures, denoted by (S(TM), ξ), on M which are use-
ful for a variety of interesting geometric and or physical problems, whereξ is a global
normal null section. We show that there is a large class of lightlike hypersurfaces of
Lorentzian manifolds for which there do exist distinguished structures of specific screen
distributions and their normal null sections having good properties. We also find integra-
bility conditions for some well-chosen distinguished structures. We first study the prop-
erties of the lightlike mean curvature and give a general version of the Raychaudhuri’s
equation.

The problem of finding methods of construction of invariant normalization of lightlike
hypersurfaces was earlier studied in[1] from a different point of view.
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2. Preliminaries

For the convenience of readers, we repeat the relevant material from[3] without proofs.
From [3, p. 79, Theorem 1.1], we know that for a screen distributionS(TM) on M there
exists a unique vector bundle tr(TM) such that for any non-zero local normal sectionξ on
U there exists a unique sectionN of tr(TM)|U satisfying

〈ξ,N〉 = 1; 〈N,W〉 = 0, for all W ∈ Γ (S(TM)|U). (2)

Then, we have the decomposition

TM̄|M = TM ⊕ tr(TM). (3)

From now on,ξ denotes a non-zero local (global in Section4) section ofRad(TM). Using
the decompositions(1) and (3), we obtain the formulas

∇̄XY = ∇XY + h(X, Y ),

∇XU = −A∗
U (X) + ∇∗t

X U,
(4)

whereX, Y ∈ Γ (TM) andU ∈ Rad(TM). It is easy to check that∇ is a torsion-free linear
connection onM, h is aΓ (tr(TM))-valued symmetricF(M)-bilinear form onΓ (TM) and
A∗
U is Γ (S(TM))-valuedF(M)-linear operator onΓ (TM) and is called theshape operator

of the screen distributionS(TM). From this formulas we define thesecond fundamental
formBU as follows

BU (X, Y ) = 〈A∗
U (X), Y〉 = 〈h(X, Y ), U〉. (5)

It is important to mention that the second fundamental formBU onM is independent of the
choice of screen distribution. We can also obtain the local versions of these formulas for
a pair{ξ,N} verifying (2). Thus, from decomposition(3), the local Gauss and Weingarten
formulas are given by

∇̄XY = ∇XY + B(X, Y )N, ∀X, Y ∈ Γ (TM|U),
∇̄XN = −ANX+ τ(X)N, ∀X ∈ Γ (TM|U),

(6)

whereB, AN and∇ are called the local second fundamental form, the shape operator and
the induced linear torsion free connection andτ is a 1-form onTM|U. On the other hand,
from the decompositionTM = S(TM) ⊕ Rad(TM) we obtain the following local Gauss
and Weingarten formulas with respect toS(TM)

∇XW = ∇∗
XW + C(X,W)N, X ∈ Γ (TM|U),

∇Xξ = −A∗
ξX− τ(X)ξ, W ∈ Γ (S(TM)|U), (7)

whereC,A∗
ξ and∇∗ are called the local second fundamental form, the local shape operator

and the induced connection onS(TM).
Let ∇ be the induced linear connection onM and denote bȳR andR the curvature tensor

of ∇̄ and∇, respectively. From[3, p. 93, Eq. (3.1)], R̄ andRare related by

R̄(X, Y )Z = R(X, Y )Z + Ah(X,Z)Y − Ah(Y,Z)X+ (∇Xh)(Y,Z) − (∇̄Yh)(X,Z), (8)
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whereAV ∈ Γ (tr(TM)) denotes the shape operator of the lightlike immersionM ⊂ M̄.
From Eq.(8), we obtain the Gauss–Codazzi equations ofM.

Theorem 1 ([3]). Let (M,S(TM)) be a lightlike hypersurface of a Lorentzian manifold̄M
and consider a pair{ξ,N} onU. Then, we have the following equations

〈R̄(X, Y )Z, ξ〉 = (∇XB)(Y,Z) − (∇YB)(X,Z) + τ(X)B(Y,Z) − τ(Y )B(X,Z), (9)

〈R̄(X, Y )Z,W〉 = 〈R(X, Y )Z,W〉 + B(X,Z)C(Y,W) − B(Y,Z)C(X,W), (10)

〈R̄(X, Y )ξ,N〉 = 〈R(X, Y )ξ,N〉 = C(Y,AξX) − C(X,AξY ) − 2 dτ(X, Y ). (11)

We need the following from Kupeli[8]. Consider

T̃M = TM

Rad(TM)
, Π : Γ (TM) −→ Γ (T̃M) (canonical projection)

Denote X̃ = Π(X) and g̃(X̃, Ỹ ) = g(X, Y ). It is easy to prove that the operatorÃU :
Γ (T̃M) −→ Γ (T̃M) defined byÃU (X̃) = −(Π(∇̄XU)), whereU ∈ Γ (Rad(TM)) andX ∈
Γ (TM) is a self-adjoint operator. Moreover, it is known that all Riemannian self-adjoint
operators are diagonalizable. Let{k1, . . . , km} be the eigenvalues. If̃Ski , 1 ≤ i ≤ m, is the
eigenspace ofki, then

T̃M = S̃k1⊥ · · · ⊥S̃km .

3. Lightlike mean curvature and Raychaudhuri’s equation

Choose a screen distributionS(TM) and denote byPS : Γ (TM) −→ Γ (S(TM)) the cor-
responding projection. LetU ∈ Γ (Rad(TM)) be a normal section onM and consider the
operatorAU = A∗

U |S(TM) : Γ (S(TM)) −→ Γ (S(TM)), whereA∗
U is the shape operator de-

fined by the Eq.(4) andW ∈ Γ (S(TM)). AU is calledshape operatoron the distribu-
tion S(TM) associated withU, which is a self-adjoint and diagonalizable operator. Let
{k∗

1, . . . , k
∗
m} be the different eigenvalues onM andSk∗

i
(TM), 1 ≤ i ≤ m the eigenspace of

k∗
i , respectively. Then,

S(TM) = Sk∗
1
(TM)⊥ · · · ⊥Sk∗

m
(TM),

and we can find the following local adapted orthonormal basis of eigenvectors

{E1
1, . . . , E

1
r1
, E2

1, . . . , E
2
r2
, . . . , Em1 , . . . , E

m
rm

},

where AU (Eij) = k∗
i E

i
j, with 1 ≤ i ≤ m, 1 ≤ j ≤ ri and ri is the dimension of the

eigenspace ofk∗
i . Consider a map̃PS : Γ (T̃M) −→ Γ (S(TM)) defined byP̃S(X̃) = PSX.
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Then,P̃S is a vector bundle isomorphism, and we have

P̃S(ÃUX̃) = P̃S(−Π(∇̄XU)) = PS(−∇̄XU) = PS(−∇̄PSXU) = AU (PSX).

Lemma 1. Let (M,S(TM)) be a lightlike hypersurface of a Lorentzian manifold̄M. With
the above notations k is an eigenvalue ofÃU iff k is an eigenvalue ofAU . Furthermore,
X̃ is an eigenvector of̃AU associated with k if and only ifPSX is an eigenvector ofAU
associated with k.

Proof. It is an immediate consequence ofP̃S being an isomorphism.

Therefore, we conclude that the eigenvalues associated with a null section are the same
for all screen distributions. Thus, we say that the eigenvalues{k1, . . . , km} of AU arethe
principal curvaturesassociated with the null normal sectionU.

Lemma 2. Let U andÛ be two normal sections such thatÛ = αU, then if k is an eigenvalue
ofAU , thenαk is an eigenvalue ofAÛ with the same multiplicity.

Proof. Let S(TM) be any screen distribution and we consider the shape operatorAÛ :
Γ (S(TM)) −→ Γ (S(TM)). FromLemma 1, we know that the eigenvalues respect toÛ do
not depend on the screen, so ifW is an eigenvector ofAU with respect tok, then

AÛ (W) = PS(−∇̄WÛ) = PS(−∇̄W (αU)) = PS(−W(α)U − α∇̄WU) = αkW.

Thus,αk is an eigenvalue associated withÛ.

Let {Eij; 1 ≤ i ≤ m,1 ≤ j ≤ ri} be a local orthonormal basis of eigenvectors of
Γ (S(TM)|U). In order to facilitate the notation and depending on the context, we will also
denote it by{Ea; 1 ≤ a ≤ n} and soAU (Ea) = kaEa, whereka may be repeated. It is well
known that thelightlike mean curvatureHU : M −→ R with respect to a normal sectionU
is given by

HU = −
n∑
a=1

B(Ea,Ea) = −
n∑
a=1

〈AU (Ea), Ea〉.

It is easy to show thatHU does not depend on both the screen distribution and the orthonormal
basis, and soHU = −∑n

a=1 ka.
One of the good properties of the mean curvature is that it does not depend on the screen

distribution chosen, but only of the local normal null sectionU. The geometric objects, in
particular the smooth functions, defined on a lightlike hypersurfaceM often depend on the
choice of its structure (S(TM), ξ) and sometimes this fact causes difficulty if the distribution
screen is changed. This is why our aim is to look for a good choice of a structure (S(TM), ξ)
(see Section4).

A local null normal sectionξ is calledgeodesicif ∇̄ξξ = 0 for which the integral curves
of ξ are called thenull geodesic generators. This condition has interesting geometric and
physical meanings and also helps in simplifying the computations. IfU is a null normal
section onM, then for allp ∈ M we can scale the null normal sectionU to be geodesic on
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a suitable neighborhoodU of p. Let us suppose that the local normal sectionξ is geodesic,
that is,∇̄ξξ = 0 onU. We will denote the shape operatorA∗

ξ asAξ onΓ (TM|U) (note that
for simplicity we are making an abuse of notation, but this should not cause confusion).
Consider thetidal force operatorR̄ξ : Γ (TM|U) −→ Γ (TM|U) (see[10, p. 219]) defined
as follows

R̄ξ(X) = R̄(X, ξ)ξ = ∇̄[ξ,X]ξ − ∇̄ξ∇̄Xξ.

This is a linear and self-adjoint operator, and trace(R̄ξ) = Ric(ξ, ξ). We can defineRξ :
Γ (TM|U) −→ Γ (TM|U) in the same way that̄R but using∇ instead of∇̄. From(8), it is
very easy to show that eventuallȳRξ = Rξ and, therefore, we can define the tidal force by
means of geometric objects of the lightlike hypersurface.

Proposition 1. Letξ be a local null geodesic normal section, then the tidal force operator
Rξ satisfies the equation

〈Rξ(X), Y〉 = 〈−A2
ξ (X) + (∇̄ξAξ)(X), Y〉, (12)

whereX, Y ∈ Γ (TM|U) and

(∇̄ξAξ)(X) = ∇̄ξ(AξX) − Aξ(∇̄ξX).

Proof. This is shown by the following easy computation

〈Rξ(X), Y〉 = 〈∇̄[ξ,X]ξ − ∇̄ξ∇̄Xξ, Y〉 = 〈−Aξ([ξ,X]) + ∇̄ξ(AξX), Y〉
= 〈−Aξ(∇̄ξX) + Aξ(∇̄Xξ) − ∇̄ξ(AξX), Y〉
= 〈−Aξ(Aξ(X)) + (∇̄Aξ)(X, ξ), Y〉.

As a consequence ofProposition 1, we state the following important result.

Proposition 2. Let M be a lightlike hypersurface in a Lorentzian manifold̄M. Let ξ be a
geodesic normal section onU andHξ be the lightlike mean curvature associated withξ.
Then, we have

ξ(Hξ) = −Ric(ξ, ξ) − trace(A2
ξ ) = −Ric(ξ, ξ) −

∑
a

k2
a. (13)

Proof. Let {E1, . . . , En} be a basis of eigenvectors onS(TM)|U, then we can compute the
terms of Eq.(12)whenX = Y = Ea and we obtain

〈(∇̄ξAξ)(Ea), Ea〉 = 〈∇̄ξ(AξEa) − Aξ(∇̄ξEa), Ea〉
= 〈∇̄ξ(kaEa), Ea〉 − 〈Aξ(∇̄ξEa), Ea〉 = ξ(ka) − 〈Aξ(∇̄ξEa), Ea〉
= ξ(ka) − 〈∇̄ξEa,Aξ(Ea)〉 = ξ(ka).

It clear that〈A2
ξ (Ea), Ea〉 = k2

a. Taking the trace in Eq.(12) finally we obtain the desired
result.
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Now consider the flux ofξ as a local congruence of null geodesic curves. It is known
that thevorticity tensorω is the antisymmetric part of−Aξ and theshear tensorσ is the
trace-free of the symmetric part of−Aξ. SinceAξ is symmetric,ω = 0 and

σ = −Aξ − H

n
I,

whereI is the identity operator. From Eq.(13), we obtain a version of the vorticity-free
Raychaudhuri’s equation for lightlike hypersurfaces

ξ(Hξ) = −Ric(ξ, ξ) − trace(σ2) − H2

n
. (14)

Let γ(t) ⊂ U be a null generator ofM ⊂ M̄, whereM̄ is a physical spacetime. Then, the
null mean curvature restricted toγ is the expansionθ(t) = Hξ(γ(t)) and Eq.(14)restricted to
each null generator is the well-known classic Raychaudhuri’s equation for a null geodesic
(see[5, p. 60] and [7]). This equation shows how the Ricci curvature influences on the
deviation of null geodesics ofM.

We say thatM is totally geodesicif the shape operatorAξ vanishes identically for one (and
so for all) null normal sectionξ on each neighborhoodU ⊂ M. Related to this definition we
recall the following geometric properties of totally geodesic lightlike hypersurfaces. Finally,
we also give a more general version of the Raychaudhuri’s equation for non-geodesic null
normal section.

Proposition 3. Let M be a lightlike hypersurface of a Lorentzian manifold̄M, andU ∈
Γ (Rad(TM)) a normal section with̄∇UU = −ρU. Then, we have the formula

U(HU ) = −Ric(U,U) − trace(σ2) − H2
U

n
− ρHU.

Proof. For each pointp ∈ M, there exist a neighborhoodU of p and a smooth function
α : U −→ R such thatU = αξ, whereξ is a geodesic normal section onU. Furthermore,

−ρU = ∇̄UU = ∇̄αξ(αξ) = αξ(α)ξ = ξ(α)U,

and soρ = −ξ(α). Thus, usingLemma 2and Eq.(13)we deduce

U(HU ) = αξ(αHξ) = αξ(α)Hξ + α2ξ(Hξ) = αξ(α)Hξ + α2(−Ric(ξ, ξ) − trace(A2
ξ ))

= −ρHU − Ric(U,U) − trace(A2
U ).

Observe that this computation is independent of the chosen neighborhood, and so we have
the desired result.

Theorem 2 ([3], p. 88). Let(M,g, S(TM)) be a lightlike hypersurface of a semi-Riemannian
manifold(M̄, ḡ). Then, the following assertions are equivalent:
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(i) M is totally geodesic.
(ii) There exists a unique torsion-free metric connection∇ induced by∇̄ on M.

(iii) TM⊥ is a parallel distribution with respect to∇.
(iv) TM⊥ is a Killing distribution on M.

Another equivalence as immediate consequence of the formula(13) is the following
result (see[9]).

Theorem 3. Let M be a lightlike hypersurface in a spacetimēM satisfying the condition
Ric(ξ, ξ) ≥ 0 for everyξ ∈ Rad(TM) on eachU ⊂ M. Then, M is totally geodesic iffHξ = 0
for all local sectionsξ ∈ Rad(TM|U), that is, M is minimal.

Observe that physical spacetimes which obey the null energy conditionRic(η, η) ≥ 0
for all null vectorη onM̄ are examples of spacetimes for which is satisfied the assumption
of the above theorem. In[6] are obtained some characterization results for totally geodesic
(and so minimal) submanifolds in Lorentzian space forms.

Example 2.Consider the well-knownpp-waves metric defined by

ds2 = −2f (u, x, y) du2 − 2 dudv+ dx2 + dy2,

on a four-dimensional spacetime manifold̄M whereu, v are retarded/advanced timelike
coordinates. The null rays are given by{u, x, y constants}. Lightlike hypersurfaces are
generated by{u = constant} and the spacelike 2-surfaces are called wave surfaces. Since
they are flat, the waves are plane fronted. This metric admits a covariant constant null Killing
vector fieldξ such that

ξ = ∂v, ηa = −u;a, ηa;b = 0, ηa = gabξ
b.

Thus, the rays are non-twisting, expansion free, shearing free and hence parallel. Conse-
quently, all the Lightlike hypersurfaces, of̄M are totally geodesic.

Eq.(14)gives us a formula forξ(Hξ). Now we present a formula ofW(Hξ) for a section
W in S(TM)|U when the 1-formτ vanishes onU ⊂ M.

Theorem 4. Let (M,S(TM)) be a lightlike hypersurface of a Lorentzian manifold̄M and
ξ a normal section such that the1-form τ vanishes onU ⊂ M. Then, if W is a section of
S(TM)|U we have the formula

W(H) = −Ric(W, ξ) − div(Aξ)(W),

whereH = Hξ anddiv(Aξ)(W) = trace{X → (∇XAξ)(W)} with X inΓ (TM|U).

Proof. Let {Ea; 1 ≤ a ≤ n} be a local orthonormal basis of eigenvectors ofΓ (S(TM)|U).
AsW(H) = −∑n

a=1W(ka). We first computeW(ka) using the Gauss–Codazzi equations.
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The formula(9) with X = W , Y = Z = Ea is

〈R̄(W,Ea)Ea, ξ〉 = − (∇WB)(Ea,Ea) + (∇EaB)(W,Ea) − τ(W)B(Ea,Ea)

+τ(Ea)B(W,Ea).

We display the terms of this equation using(10)and the symmetries of the involved operators
as follows

〈R̄(W,Ea)Ea, ξ〉 = −〈R̄(W,Ea)ξ, Ea〉 = −〈R(W,Ea)ξ, Ea〉,
(∇WB)(Ea,Ea) = W(B(Ea,Ea)) − 2B(∇WEa,Ea) = W(ka),

(∇EaB)(W,Ea) = 〈∇Ea (AξW), Ea〉 − 〈Aξ(∇EaW), Ea〉 = 〈(∇EaAξ)(W), Ea〉.

Then, we have

W(ka) = 〈R(W,Ea)ξ, Ea〉 + 〈(∇EaAξ)(W), Ea〉 − kaτ(W) + 〈AξW, τ(Ea)Ea〉.

Accordingly,

W(H) = −
n∑
a=1

〈R(W,Ea)ξ, Ea〉 −
n∑
a=1

〈(∇EaAξ)(W), Ea〉 −Hτ(W)

−
〈
AξW,

n∑
a=1

τ(Ea)Ea

〉
.

From(11), we have that

Ric(W, ξ) =∑n
a=1〈R(Ea,W)ξ, Ea〉 + 〈R(ξ,W)ξ,N〉

=∑n
a=1〈R(Ea,W)ξ, Ea〉 − 〈AξW,ANξ〉 − 2 dτ(ξ,W),

div(Aξ)(W) =∑n
a=1〈(∇EaAξ)(W), Ea〉 + 〈(∇ξAξ)(W), N〉

=∑n
a=1〈(∇EaAξ)(W), Ea〉 + 〈Aξ(W), ANξ〉,

and hence we conclude that

W(H)= − Ric(W, ξ)−div(Aξ)(W)−τ(W)H − 2 dτ(W, ξ)−
〈
AξW,

n∑
a=1

τ(Ea)Ea

〉
.

Finally, the assumptionτ = 0 onU establishes the formula.

4. Distinguished structures

This section is devoted to study lightlike hypersurfaces admitting a global null normal
sectionξ on M. Before establishing the main result of this section we need to give some
definitions and results.
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Definition 1. Let M be a lightlike hypersurface of a Lorentzian manifold̄M. A pair
(S(TM), ξ) is said to be a global structure onM iff ξ is a non-vanishing global null normal
(GNN) section onM.

One can find a large class of interesting examples of lightlike hypersurfaces admitting a
global structure. SupposēM is a time-oriented Lorentzian manifold andη a smooth global
timelike vector field onM̄. Let M be a lightlike hypersurface in̄M. Then,η restricted to
M is a global section ofRad(TM) ⊕ tr(TM). Thus, the projection ofη|M ontoRad(TM)
provides a non-vanishing GNN section onM.

Definition 2. Let M be a lightlike hypersurface of a Lorentzian manifold̄M admitting a
GNN sectionξ onM. A Riemannian distributionD(TM) of TM is said to beξ-distinguished
if each sectionWofD(TM) satisfies̄∇Wξ ∈ Γ (D(TM)). In particular, if a screen distribution
S(TM) is ξ-distinguished the pair (S(TM), ξ) is called a distinguished structure onM.

Let (S(TM), ξ) be a global structure ofM. Consider the shape operatorAξ :
Γ (S(TM)) −→ Γ (S(TM)) globally defined. FromLemma 1, we have that the eigenval-
ues respect toξ do not depend on the screen. Thus, we say that the eigenvalues ofAξ are
the principal curvaturesassociated with the GNN sectionξ.

Proposition 4. Let (M,S(TM)) be a lightlike hypersurface of a Lorentzian manifold̄M
admitting a geodesic GNN sectionξ on M. Then, S(TM) is ξ-distinguished if only if the
corresponding1-form τ from (6) vanishes. In such case, the Ricci tensor of the induced
connection∇ is symmetric.

Proof. Consider a vector fieldX onM. Then, we have

τ(X) = −〈∇̄Xξ,N〉 = 〈∇̄(PS (X)+λξ)ξ,N〉 = −〈∇̄PS (X)ξ,N〉.

Thus,τ = 0 if and only if∇̄PS (X)ξ ∈ Γ (S(TM)). Finally, it follows from[3, p. 99, Theorem
3.2] that the induced Ricci tensor is symmetric.

In fact, Theorem 3.2 in[3] establishes that given a screen distributionS(TM), then the
Ricci tensor is symmetric if and only if dτ = 0 for any chosen GNN sectionξ. Moreover,
Proposition 3.4 in[3] ensures that for this case there exists a pair{ξ,N} on M such that
the corresponding 1-formτ vanishes. Bearing in mindProposition 4, the condition dτ = 0
allows us to find distinguished structures (S(TM), ξ) with ξ a geodesic GNN section. Now
we are trying to find more examples of lightlike hypersurfaces admitting distinguished
structures.

Theorem 5. Let M be a lightlike hypersurface in a Lorentzian manifold̄M admitting a
GNN sectionξ. Suppose that̄∇ξξ = −ρξ and {k1, . . . , km} are the principal curvatures
associated withξ onM. Then, there exist a uniqueξ-distinguished Riemannian distribution
Dξ(TM) such that:
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(i) If ρ �= ki for all i ∈ {1, . . . , m}, we have the decomposition

TM = Rad(TM)⊥Dξ(TM),

and so(S(TM) = Dξ(TM), ξ) is a unique distinguished structure.
(ii) If ρ = ki0 for somei0 ∈ {1, . . . , m}, we have the decomposition

TM = Rad(TM)⊥Sρ(TM)⊥Dξ(TM),

whereSρ(TM) is any eigenspace associated with the eigenvalueρ = ki0.

Proof. SupposeS(TM) andŜ(TM) are two different screens. LetSk(TM) ≤ S(TM) and
Ŝk(TM) ≤ Ŝ(TM) be both vector subbundles associated with the same eigenvaluek. Let
{E1, . . . , Er} be a orthonormal basis ofSk(TM) and construct the set{Ê1, . . . , Êr}, where
Êj = PŜ(Ej), 1 ≤ j ≤ r. FromLemma 1, we have that{Ê1, . . . , Êr} is a orthonormal basis
of Ŝk(TM) satisfying the formulas

∇̄Ejξ = −kEj − τ(Ej)ξ,

∇̄Êj
ξ = −kÊj − τ̂(Êj)ξ, 1 ≤ j ≤ r,

Êj = Ej + µjξ.

(15)

We are interested in findingµj such that̂τ(Êj) vanishes, so that̂Sk(TM) is aξ-distinguished
Riemannian distribution. Then, we have

∇̄Êj
ξ = ∇̄(Ej+µjξ)ξ = ∇̄Ejξ + µj∇̄ξξ = −kEj − τ(Ej)ξ − ρµjξ,−kÊj

= −k(Ej + µjξ) (16)

and, therefore,µj(ρ − k) = τ(Ej). Accordingly, we obtain that ifρ �= k, then it is enough
to takeµj = τ(Ej)/(ρ − k) and trivially Ŝk(TM) is unique withτ̂ = 0 on τ̂k(TM). Thus,
we have actually proved both statements taking

D(TM) =
⊕
k �=ρ

Ŝk(TM).

Note that ifki �= ρ for all i, then (̂S(TM), ξ) is a unique distinguished structure.

Observe thatTheorem 5provides a large class of distinguished structures.

Definition 3. Let M be a lightlike hypersurface of a Lorentzian manifold̄M. Then,M is
said to betotally non-geodesicif all principal curvatures associated with every local section
ξ ∈ Γ (Rad(TM)|U) are non-zero everywhere.

Sufficient conditions for rescaling a GNN sectionξ to be a geodesic vector field are given
in [9, Section 4]for lightlike hypersurfaces in spacetimes. We give some interesting results
whenM admits a geodesic GNN section.
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Corollary 1. Let M be a totally non-geodesic lightlike hypersurface in a Lorentzian mani-
foldM̄ admitting a geodesic GNN sectionξ.Then, there exist a uniqueξ-distinguished screen
distribution. In that case, the tidal forceRξ is Γ (S(TM))-valued if and only ifANξ = 0.

Proof. The existence of a uniqueξ-distinguished screen comes fromTheorem 5(i). It
remains to prove the second statement. Let{Ea; 1 ≤ a ≤ n} be an orthonormal basis of
eigenvectors ofAξ, from (11), we deduce

〈Rξ(Ea), N〉 = 〈R(Ea, ξ)ξ,N〉 = C(ξ, Aξ(Ea)) = ka〈AN (ξ), Ea〉.

As ka �= 0 andS(TM) is non-degenerate,Rξ is Γ (S(TM))-valued iffAN (ξ) = 0.

In particular, all totally non-geodesic lightlike hypersurface in a Lorentzian manifold of
constant curvature with a geodesic GNN sectionξ admit a uniqueξ-distinguished structure
such thatAN (ξ) = 0.

Example 1.Monge hypersurfaces inRn+2
1 . Consider a smooth functionF : Ω → R, where

Ω is an open set ofRn+1, then

M = {(x0, . . . , xn+1) ∈ Rn+2
1 , x0 = F (x1, . . . , xn+1)}

is called a Monge hypersurface. It is easy to check that such a hypersurface is lightlike
hypersurface if and only ifF is a solution of the partial differential equation

n+1∑
i=1

∂i(F )2 = 1, (17)

where∂i = ∂
xi

. We choose the radical and transversal vector bundles as those that are globally
spanned by

ξ = ∂0 +
n+1∑
i=1

∂i(F )∂i, N = 1

2

{
−∂0 +

n+1∑
i=1

∂i(F )∂i

}
.

The corresponding screen distribution is given by{W1, . . . ,Wn}, where

Wr = ∂n+1(F )∂r − ∂r(F )∂n+1, 1 ≤ r ≤ n.

If we derive Eq.(17) with respect toxj, we obtain that
∑n+1

i=1 ∂i(F )∂ij(F ) = 0 for all
1 ≤ j ≤ n+ 1 and we get

∇̄ξξ = ∇̄
(∂0+
∑n+1

i=1
∂i(F )∂i)

(
∂0 +

n+1∑
i=1

∂i(F )∂i

)
=

n+1∑
j=1

(
n+1∑
i=1

∂i(F )∂ij(F )

)
∂j = 0,
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soξ is a geodesic GNN section. Furthermore, we are going to prove thatS(TM) spanned
byWr is ξ-distinguished.

∇̄Wrξ = ∇̄(∂n+1(F )∂r−∂r(F )∂n+1)

(
∂0 +

n+1∑
i=1

∂i(F )∂i

)

=
n+1∑
i=1

(∂n+1(F )∂ri(F ) − ∂r(F )∂n+1,i(F ))∂i.

Bearing in mind that∂s = ∂n+1(F )−1(Ws + ∂s(F )∂n+1) for all 1 ≤ s ≤ n, we have

∇̄Wrξ =
n∑
s=1

(∂rs(F ) − ∂n+1(F )−1∂r(F )∂n+1,s(F ))Ws

+
n∑
s=1

(∂rs(F )∂s(F ) − ∂n+1(F )−1∂s(F )∂r(F )∂n+1,s(F ))∂n+1

+(∂n+1(F )∂r,n+1(F ) − ∂r(F )∂n+1,n+1(F ))∂n+1

=
n∑
s=1

(∂rs(F ) − ∂n+1(F )−1∂r(F )∂n+1,s(F ))Ws, (18)

where we have made use of

n∑
s=1

(∂rs(F )∂s(F )) + ∂n+1(F )∂r,n+1(F ) = 0.

Therefore,∇̄Wrξ ∈ Γ (S(TM)) and so is distinguished. From(18), we can easily compute
the null mean curvatureHξ as follows

Hξ =
n∑
r=1

(∂rr(F ) − ∂n+1(F )−1∂r(F )∂n+1,r(F ))

=
n∑
r=1

∂rr(F ) + ∂n+1(F )−1∂n+1(F )∂n+1,n+1(F ) =
n+1∑
i=1

∂ii(F ).

We list the following properties of Monge hypersurfaces, which will obviously hold for
M with a distinguished structure. For proofs see[3, Chapter 4].

(1) On a lightlike Monge hypersurfaceM of Rn+2
1 , there exists an integrable screen distri-

butionS(TN).
(2) A lightlike Monge hypersurfaceM ofRn+2

1 is a product manifoldM = L × M ′, where
L is an open subset of a null line andM ′ is Riemannian.

(3) The geometry of a lightlike Monge hypersurfaceM of Rn+2
1 essentially reduces to the

Riemannian geometry of a leafM ′ of S(TM).
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Finally, we find integrability conditions of the screen distribution for a class of non-totally
geodesic lightlike hypersurfaces with non-zero null mean curvature.

Definition 4. A lightlike hypersurface (M,g) of a semi-Riemannian manifold (̄M, ḡ) is said
to betotally umbilical if for every local sectionξ ∈ Γ (Rad(TM)|U) there exists a smooth
functionρ onU such that

Bξ(X, Y ) = ρg(X, Y ), ∀X, Y ∈ Γ (TM).

M is proper totally umbilicalin M̄ if the functionρ is non-zero. Furthermore, this definition
is independent of the chosen screen distributionS(TM).

Theorem 6. Let(M,S(TM)) be a lightlike hypersurface of a Lorentzian manifold̄M. Then,
M is totally umbilical if and only if every sectionξ ∈ Γ (Rad(TM)|U) is a conformal killing
vector field onU, that is, Lξg = Ωg, withΩ = −2ρ.

Proof. We obtain the result from a straightforward computation

Lξg(X, Y ) = ξ〈X, Y〉 − 〈LξX, Y〉 − 〈X,LξY〉 = −〈AξX, Y〉 − 〈X,AξY〉
= −2〈AξX, Y〉. (19)

Then,Lξg(X, Y ) = Ωg(X, Y ) iff 〈2AξX+ΩX,Y〉 = 0 for all X, Y ∈ Γ (TM) iff AξX =
−(Ω/2)PsX, so as per[3, p. 107, Eq. (5.3)], M is totally umbilical.

We refer [5, Chapters 5 and 6]for a variety of examples of fluid spacetimes, with
metric (such as conformal Killing, homothetic and Killing) symmetries. Now we quote
the following general result for a proper totally lightlike submanifold.

Theorem 7 ([4]). Let (M,g, S(TM)) be a proper totally umbilical lightlike submanifold of
a semi-Riemannian manifold(M̄(c̄), ḡ) of a constant curvaturēc. Then, the induced Ricci
tensor on M is symmetric if and only if its screen distributionS(TM) is integrable.

By Corollary 1, a proper totally umbilical lightlike hypersurfaceM with a geodesic
GNN sectionξ admits a uniqueξ-distinguished screen. Furthermore, byProposition 4, M
also admits a symmetric Ricci tensor. Then, using above Duggal–Jin theorem we have the
following result.

Theorem 8. Let M be a proper totally umbilical lightlike hypersurface of a Lorentzian
manifoldM̄(c̄) of constant curvature with a geodesic GNN sectionξ. Then, there exists a
unique integrableξ-distinguished screen distributionS(TM) on M.

Now we are going to present a procedure to construct integrable screen distributions in
a larger class of lightlike hypersurfaces in Lorentzian manifolds. With this aim in mind we
need to recall a basic result.
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Lemma 3. Let c be a value of a smooth functionf : M → R,where M is a smooth manifold.
If at each point off−1(c) = {p ∈ M : f (p) = c} the dfp is non-zero, thenf−1(c) is a
submanifold of M, called a level hypersurface of f.

In fact, if for all p ∈ M, dfp is non-zero, thenf is a submersion ontof (M). It is well
known that the set of vectorsX of TM tangent to fibers are calledvertical, denoted by
V(TM). Moreover,X ∈ Γ (V(TM)) iff df (X) = 0. In particular, letξ be a GNN section
and consider the lightlike mean curvatureH = Hξ : M −→ Im(H) ⊆ R on M associated
with ξ defined as the trace of−Aξ, as a submersion function. It is well-known that the
points where the null mean curvature is−∞ are focal points (singularities) of the lightlike
hypersurfaces. We will not consider such points in our work. The following result ensures
that, under suitable conditions, we can always find a set of integrable screen distributions
by consideringH as a submersion.

Theorem 9 (Integrability conditions).Let(M,g) be a lightlike hypersurface of a Lorentzian
manifold(M̄, ḡ) admitting a geodesic GNN sectionξ and satisfying the condition

Ric(ξ, ξ) �= −trace(σ2) − H2
ξ

n
(20)

for one (and so for all) geodesic GNN sectionξ on M. Then, H = Hξ : M −→ Im(Hξ) ⊆
R is a submersion and, therefore, M admits an integrable screen distributionS∗(TM) =
V(TM).

Proof. We must prove that dH |p �= 0 for all p ∈ M. For this, it is enough to prove that
there exists a vectorv in TpM such that dH |p(v) �= 0. By takingv = ξp and using the
Raychaudhuri’s equation, we get

dHp(ξp) = ξp(H) = −Ric(ξp, ξp) − trace(σ2
p) − H(p)2

n
.

Therefore, dHp �= 0 for all p if only if it is satisfied(20). As H is a submersion we take
S∗(TM) = calV (TM), thenS∗(TM) is Riemannian and clearly integrable.

Note that in this case for allp in M, there is ann-dimensional integral submanifold
=p = H−1(H(p)) such thatTp= = S∗

p(TM). The preceding theorem provides a screen
distributionS∗(TM) = V(TM) characterized by the propertyW(Hξ) = 0 for all sectionW
of S∗(TM).

Corollary 2. Let(M,g) a lightlike hypersurface of a spacetime(M̄, ḡ) admitting a geodesic
GNN sectionξ on M satisfying the null energy conditionRic(ξ, ξ) ≥ 0. Let (S(TM), ξ) be a
distinguished structure on M satisfying the condition

Ric(W, ξ) = div(Aξ)(W), for all W ∈ Γ (S(TM)). (21)

Then,S(TM) is integrable.



122 K.L. Duggal, A. Gim´enez / Journal of Geometry and Physics 55 (2005) 107–122

Proof. We take again the null mean curvatureH �= 0 of M associated with the geodesic
GNN sectionξ. Since Ric(ξ, ξ) ≥ 0, Eq.(20) is satisfied, and soH is a submersion. On the
other hand, (S(TM), ξ) is distinguished withξ a geodesic GNN section, soτ = 0 onM, and
usingTheorem 4, we have thatW(H) = 0 for allW ∈ Γ (S(TM)). The vertical vector fields
are characterized by this property, therefore,S(TM) = V(TM).
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