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Abstract

We first study the properties of the lightlike mean curvature on a lightlike hypersurface in a
Lorentzian manifold. Then, we show the existence of a large class of lightlike hypersurfaces ad-
mitting a distinguished screen and study some of their properties. In particular, we find integrability
conditions for distinguished screen distributions and give applications in a spacetime which obeys the
null energy condition.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that in a semi-Riemannian manifold there are three causal types of
submanifolds: spacelike (Riemannian), timelike (Lorentzian) and lightlike (degenerate),
depending on the character of the induced metric on the tangent space. In the third case,
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due to the degeneracy of the metric, basic differences occur between the study of lightlike
submanifolds and the classical theory of Riemannian and semi-Riemannian submanifolds
(see, for exampld1-3,6,8,11].

Lightlike submanifolds (in particular, lightlike hypersurfaces) are interesting in general
relativity since they produce models of different types of horizons (event horizons, Cauchy’s
horizons, Kruskal’s horizons). The idea that the Universe we live in can be represented as
a four-dimensional submanifold embedded in a-(4)-dimensional spacetime manifold
has attracted the attention of many physicists. Higher dimensional semi-Euclidean spaces
should provide a theoretical framework in which the fundamental laws of physics may
appear to be unified, as in the Kaluza—Klein scheme. Lightlike hypersurfaces are also
studied in the theory of electromagnetism (see, for exanjpleChapter 8] and several
others sited therein).

In this paper, we study am @ 1)-dimensional lightlike hypersurfacé/ g), n > 2,
of a (» + 2)-dimensional Lorentzian manifold, g), whereg is a degenerate metric on
M, induced by the Lorentzian metrig of M. We use the notations and some needed
results from[3, Chapter 4] In the lightlike hypersurface case, basic differences occur
mainly due to the fact that the normal vector bundl&/+ is same as the null tan-
gent bundle along a non-zero differentiable radical distribuftad(7M) of M, defined

by
Rad(T:M) = T:M* = (&, € T(M) : g(£x, X) = 0, X € To(M)},

wheredim(Rad(TM)) = 1. There exists a Riemannian screen distribution, denS(tEx),
on M which is complementary to the radical distribution such that we have the orthogonal
direct sum

™ = TM* & S(TM). 1)

Throughout this paper, we denote ByM) the algebra of differentiable functions dh
and I'(E) the F(M)-module of differentiable sections of a vector bunBlever M. The
manifolds we consider are supposed to be paracompact, smooth and connected. There-
fore, the existence of(TM) is secured. However, in general(7M) is not canonical
(thus not unique) and the lightlike geometry depends on its choice. It is, therefore, im-
portant to look for a screen distribution with good properties. The objective of this paper
is to study a set of distinguished structures, denotedSkyM), &), on M which are use-
ful for a variety of interesting geometric and or physical problems, wldeea global
normal null section. We show that there is a large class of lightlike hypersurfaces of
Lorentzian manifolds for which there do exist distinguished structures of specific screen
distributions and their normal null sections having good properties. We also find integra-
bility conditions for some well-chosen distinguished structures. We first study the prop-
erties of the lightlike mean curvature and give a general version of the Raychaudhuri's
equation.

The problem of finding methods of construction of invariant normalization of lightlike
hypersurfaces was earlier studied1h from a different point of view.
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2. Preliminaries

For the convenience of readers, we repeat the relevant material3tamithout proofs.
From[3, p. 79, Theorem 1.1we know that for a screen distributidf{(7M) on M there
exists a unique vector bundle T¥/) such that for any non-zero local normal sectfoon
U there exists a unique sectidhof tr(TM)|,, satisfying

(&, N) =1, (N,W)=0, forall We I'(S(TM)|y). 2
Then, we have the decomposition
TM|y = TM & tr(TM). (3)

From now on§ denotes a non-zero local (global in Sect®rsection ofRad(TM). Using
the decompositionél) and (3) we obtain the formulas

VxY = VxY + h(X, ),

4
VxU = —A§(X) + VU, “)

whereX, Y € I'(TM) andU € Rad(TM). It is easy to check tha& is a torsion-free linear
connection orM, his a I'(tr(TM))-valued symmetricF(M)-bilinear form onI"(TM) and
A}, is I'(S(TM))-valuedF(M)-linear operator od”(TM) and is called thehape operator
of the screen distributio§(7M). From this formulas we define treecond fundamental
form By as follows

By(X,Y) = (Ay(X), Y) = (h(X,Y), U). ®)

It is important to mention that the second fundamental f&gon M is independent of the
choice of screen distribution. We can also obtain the local versions of these formulas for
a pair{&, N} verifying (2). Thus, from decompositio(8), the local Gauss and Weingarten
formulas are given by

VxY = VxY + B(X,Y)N, VX,Y e I'(TM),

v 6
VxN = —ANyX + t(X)N, VX e I'(TM|y), ©

whereB, Ay andV are called the local second fundamental form, the shape operator and
the induced linear torsion free connection anid a 1-form onTM ;.. On the other hand,
from the decompositiofM = S(TM) & Rad(TM) we obtain the following local Gauss
and Weingarten formulas with respectt@'M)

VxW = VEW + C(X, W)N, X € I'(TM|y),

VxE = —AIX —t(X)5, W e [(S(TM)k). "

whereC, A andV* are called the local second fundamental form, the local shape operator
and the induced connection S(TM). B

Let V be the induced linear connection bhand denote by andRthe curvature tensor
of V andV, respectively. Froni3, p. 93, Eq. (3.1)]R andR are related by

R(X,Y)Z = R(X, Y)Z + Anx.2)Y — Angr.z)X + (Vxh)(Y, Z) — (Vyh)(X, Z), (8)
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where Ay € I'(tr(TM)) denotes the shape operator of the lightlike immersirc M.
From Eq.(8), we obtain the Gauss—Codazzi equationslof

Theorem 1 ([3]). Let(M, S(TM)) be a lightlike hypersurface of a Lorentzian manifai
and consider a paifé, N} onl{. Then we have the following equations

(R(X.Y)Z.£) = (VxB)(Y. Z) — (VyB)(X, Z) + ©(X)B(Y, Z) — ©(Y)B(X. Z), (9)
(R(X,Y)Z, W) = (R(X, Y)Z, W) + B(X, Z)C(Y, W) — B(Y, Z)C(X, W), (10)

(R(X, V)&, N) = (R(X, V)£, N) = C(Y, AgX) — C(X, AgY) —2dr(X,¥).  (11)
We need the following from Kupe[B]. Consider

— ™ — . L
M=————, I: r(TM) — I'(TM) (canonical projection)

Rad(TM)
Denote X = /7(X) and g(X, ¥) = g(X. Y). It is easy to prove that the operatd :
I'(TM) — I'(TM) defined byAy(X) = —(IT1(VxU)), whereU € I'(Rad(TM)) andX €
I’(TM) is a self-adjoint operator. Moreover, it is known that all Riemannian self-adjoint
operators are diagonalizable. g, . . ., k,,} be the eigenvalues. §,, 1 <i < m, is the
eigenspace df;, then

?M:Sli_HJ_Sk

m*

3. Lightlike mean curvature and Raychaudhuri’s equation

Choose a screen distributisifZ7d7) and denote bys : I'(TM) —> I'(S(TM)) the cor-
responding projection. Ldl € I'(Rad(TM)) be a normal section okl and consider the
operatorAy = Ay lsam) - I'(S(TM)) — I'(S(TM)), whereAJ; is the shape operator de-
fined by the Eq(4) and W € I'(S(TM)). Ay is calledshape operatoon the distribu-
tion S(TM) associated witiJ, which is a self-adjoint and diagonalizable operator. Let
{k1, ..., k;,} be the different eigenvalues cNhandSkl_*(TM), 1 <i < m the eigenspace of
k}, respectively. Then,

S(TM) = Sps(TM) L - - - LS (TM),
and we can find the following local adapted orthonormal basis of eigenvectors

(E}, ... EX E2 ... E2 ... E} ... E"

ry’ r2’ T'm

I8

where AU(Eij) = k?‘Ei/., with 1<i<m, 1< j<r andr; is the dimension of the
eigenspace of:. Consider a mags : I'(TM) —> I'(S(TM)) defined byPg(X) = PsX.
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Then, P is a vector bundle isomorphism, and we have
Ps(AuX) = Ps(~I1(VxU)) = Ps(—VxU) = Ps(=Vp,xU) = Ay(PsX).

Lemma 1. Let(M, S(TM)) be a lightlike hypersurface of a Lorentzian maniféid With
the above notations k is an eigenvalueZn} iff k is an eigenvalue ofi;;. Furthermore
X is an eigenvector ofi; associated with k if and only iPsX is an eigenvector ofiy
associated with k

Proof. Itis an immediate consequence®yf being an isomorphism.

Therefore, we conclude that the eigenvalues associated with a null section are the same
for all screen distributions. Thus, we say that the eigenvalkes. ., k,,} of Ay arethe
principal curvaturesassociated with the null normal sectign

Lemma 2. LetU andU be two normal sections such tHat= aU, thenifk is an eigenvalue
of Ay, thenak is an eigenvalue of; with the same multiplicity

Proof. Let S(TM) be any screen distribution and we consider the shape opetgtor
r'(S(tM)) — ' (S(TMm)). FromLemma 1 we know that the eigenvalues respectitdo
not depend on the screen, saffis an eigenvector oft y with respect tk, then

Ag(W) = Ps(—Vw0) = Ps(— Vi (aU)) = Ps(—W(a)U — aVyU) = akW.

Thus,ak is an eigenvalue associated with

Let {Ei;1<i<m,1<j<r;} be a local orthonormal basis of eigenvectors of
'(S(TM)|y). In order to facilitate the notation and depending on the context, we will also
denote it by{E,; 1 < a < n} and soAy(E,) = k. E,, wherek, may be repeated. It is well
known that thdightlike mean curvaturédy : M —> R with respect to a normal sectidh
is given by

n

Hy ==Y B(Ea Eq)=—Y (Ay(EJ), Ed).
a=1

a=1

Itis easy to show thdiy does notdepend on both the screen distribution and the orthonormal
basis, and sély = — > '_; k4.

One of the good properties of the mean curvature is that it does not depend on the screen
distribution chosen, but only of the local normal null sectidriThe geometric objects, in
particular the smooth functions, defined on a lightlike hypersurffhoéten depend on the
choice of its structure§(7TM), &) and sometimes this fact causes difficulty if the distribution
screen is changed. This is why our aim is to look for a good choice of a struS(Ui{, &)

(see Sectiod). _

Alocal null normal sectiol§ is calledgeodesiéf Ve& = O for which the integral curves
of & are called thenull geodesic generatord his condition has interesting geometric and
physical meanings and also helps in simplifying the computatiors.if a null normal
section onM, then for allp € M we can scale the null normal sectibrto be geodesic on
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a suitable neighborhodd of p. Let us suppose that the local normal secfos geodesic,

that is, Ve& = 0 oni/. We will denote the shape operawz asAg on I'(TM|y) (note that

for simplicity we are making an abuse of notation, but this should not cause confusion).
Consider thaidal force operatorRe : I'(TM |y) —> I'(TM ) (see[10, p. 219) defined

as follows

Re(X) = R(X, £)& = Vg x1& — VeVxé.

This is a linear and self-adjoint operator, and tr&¢(= Ric(, £). We can defineR; :
I'(TM|y) — I'(TM|y) in the same way thaR but usingV instead ofV. From(8), it is
very easy to show that eventual¢ = R and, therefore, we can define the tidal force by
means of geometric objects of the lightlike hypersurface.

Proposition 1. Leté& be alocal null geodesic normal sectidhen the tidal force operator
R: satisfies the equation

(Re(X), Y) = (—AX(X) + (VeAg)(X), V), (12)
whereX, Y € I'(TM ;) and

(VeAg)(X) = Ve(AeX) — Ag(VeX).

Proof. This is shown by the following easy computation
(Re(X), ¥) = (Vg xj6 — VeVx& ¥) = (—Ag((& X]) + Ve(AeX), ¥)
= (—Ae(VeX) + Ag(VxE) — Ve(4¢X), Y)
= (—Ae(Ae(X)) + (VAL(X, §), Y).

As a consequence &froposition 1we state the following important result.

Proposition 2. Let M be a lightlike hypersurface in a Lorentzian manifoid Let & be a
geodesic normal section @fiand He be the lightlike mean curvature associated with
Then we have

§(Hg) = —Ric(§, ) — trace@@?) = —Ric(t. §) — Y _ k2. (13)

Proof. Let{E,..., E,} be abasis of eigenvectors 8(I'M)|;;, then we can compute the
terms of Eq(12)whenX = Y = E, and we obtain

((VeAe)(Ey), Ea) = (Ve(AsEq) — Ae(V:Ea), Eq)
= (Ve(kaEa), Ea) — (Ae(VEEd), Ea) = (k) — (Ae(VeEy), Ea)
= &(ky) — (ViEq, Ae(Eq)) = £(ky).

It clear that(Ag(Ea), E;) = k{f. Taking the trace in Eq12) finally we obtain the desired
result.
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Now consider the flux of as a local congruence of null geodesic curves. It is known
that thevorticity tensorw is the antisymmetric part of Az and theshear tensow is the
trace-free of the symmetric part efA;. SinceA; is symmetriceo = 0 and

H
o=—As——1,
n

wherel is the identity operator. From E@L3), we obtain a version of the vorticity-free
Raychaudhuri’'s equation for lightlike hypersurfaces

HZ
£(He) = —Ric(g, &) — trace?) — —. (14)

Lety(¢r) C Ube anull generator off C M, whereM is a physical spacetime. Then, the
nullmean curvature restrictedas the expansioé(r) = Hz(y(r)) and Eq(14)restricted to
each null generator is the well-known classic Raychaudhuri’s equation for a null geodesic
(see[5, p. 60]and[7]). This equation shows how the Ricci curvature influences on the
deviation of null geodesics ol

We say thaM istotally geodesid the shape operatot; vanishes identically for one (and
so for all) null normal sectiog on each neighborhodd c M. Related to this definition we
recall the following geometric properties of totally geodesic lightlike hypersurfaces. Finally,
we also give a more general version of the Raychaudhuri’s equation for non-geodesic null
normal section.

Proposition 3. Let M be a lightlike hypersurface of a Lorentzian manifd and U €
I'(Rad(TM)) a normal section wittWy U = —pU. Then we have the formula

. H?,
U(Hy) = —Ric(U, U) — trace¢?®) — —Y — pHy.
n

Proof. For each poinip € M, there exist a neighborhodd of p and a smooth function
a : U —> R such thatly = «&, wheret is a geodesic normal section thFurthermore,

—pU = VyU = Vye(at) = at(a)t = &(a)U,

and sop = —&(). Thus, using.emma 2and Eq.(13) we deduce
U(Hy) = a&(aH;) = at(a) He + o£(Hy) = aé(e) H + o*(—Ric(, §) — trace@?))
= —pHy — Ric(U, U) — trace@?).

Observe that this computation is independent of the chosen neighborhood, and so we have
the desired result.

Theorem 2([3], p. 88). Let(M, g, S(TM)) be alightlike hypersurface of a semi-Riemannian
manifold(M, g). Then the following assertions are equivalent
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(i) Mis totally geodesic _

(i) There exists a unique torsion-free metric conneclivimduced byv on M.
(i) TM* is a parallel distribution with respect t¥.
(iv) TM= is aKilling distribution on M

Another equivalence as immediate consequence of the for(h@)ds the following
result (seg9]).

Theorem 3. Let M be a lightlike hypersurface in a spacetim?esatisfying the condition
Ric(&, &) > Ofor everyt € Rad(TM)oneacti/ C M. ThenMis totally geodesiciff = 0
for all local sectionst € Rad(TM ), that is, M is minimal

Observe that physical spacetimes which obey the null energy cond&ta{n, 7) > 0
for all null vectorn on M are examples of spacetimes for which is satisfied the assumption
of the above theorem. [i6] are obtained some characterization results for totally geodesic
(and so minimal) submanifolds in Lorentzian space forms.

Example 2.Consider the well-knowmpp-waves metric defined by

ds® = —2f(u, x, y) du? — 2 cdu dv + dx? + dy?,
on a four-dimensional spacetime manifakl whereu, v are retarded/advanced timelike
coordinates. The null rays are given By, x, y constant}. Lightlike hypersurfaces are
generated byu = constan} and the spacelike 2-surfaces are called wave surfaces. Since

they are flat, the waves are plane fronted. This metric admits a covariant constant null Killing
vector field¢ such that

& =0y, Na = —Uq, Na;b = 0, Na = gabsb'

Thus, the rays are non-twisting, expansion free, shearing free and hence parallel. Conse-
quently, all the Lightlike hypersurfaces, df are totally geodesic.

Eq.(14)gives us a formula fof(He). Now we present a formula 6V (He) for a section
Win S(TM)|y, when the 1-fornt vanishes o/ C M.

Theorem 4. Let(M, S(TM)) be a lightlike hypersurface of a Lorentzian manifdidand
& a normal section such that tHeform t vanishes ord/ c M. Then if W is a section of
S(TM)|ys we have the formula

W(H) = —Ric(W, &) — div(Ag)(W),
whereH = H; anddiv(Ag)(W) = tracd X — (VxAg)(W)} with X in I'(TM|y).

Proof. Let{E,;1 < a < n} be alocal orthonormal basis of eigenvectord ¢8(7TM)|y).
AsW(H) = — > "_; W(k,). We first computé¥ (k,) using the Gauss—Codazzi equations.
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The formula(9) with X = W, Y =Z = E,is
(R(W, Eq)Eq, &) = — (VwB)(Ea, Eg) + (VE,BY(W, Eg) — ©(W)B(Eq, Eq)
—‘,—‘L’(Eu)B(VV, Ea)~

We display the terms of this equation us{i@)and the symmetries of the involved operators
as follows

(R(W, Eq)Eq, ) = —(R(W, Eo)¢, Eq) = —(R(W, Eo)E, Ey),

(VWB)(Em Ea) = W(B(Eav Ea)) - 2B(VWEaa Ea) = W(ka)y
(VEaB)(W» Ea) = (VEa(ASW)a Eq) — <A$(VE,, W), E,;) = ((VEaAE)(W)’ Eg).

Then, we have
W(ka) = (R(W Ea)%-v E,) + ((VEaAé)(W)v Eq) — kuT(W) + (Ag"V, T(Ea)Ea>-

Accordingly,

n

W(H) = = > (R(W, Eq), Eo) = > _((Vi, Ae)(W), Eq) — He(W)
a=1

a=1
n
- <Asw, > r(Ea)Ea> .
a=1
From(11), we have that

Ric(W, §) = Y _1(R(Eq, W)E, Eq) + (R(E, W)&, N)
=Y _((R(Eq, WE, Eq) — (AgW, AnE) — 2e(E, W),
div(Ag)(W) = > _1((VE,Ae)(W), Eq) + ((VeAg)(W), N)
=0 1((VE,Ae)(W), Eq) + (A:(W), ANE),

and hence we conclude that
W(H)= — Ric(W, §)—div(Ag)(W)—t(W)H — 2 dt(W, §)— <A$W, Z r(Ea)Ea> .
a=1

Finally, the assumptiom = 0 onl/ establishes the formula.

4. Distinguished structures

This section is devoted to study lightlike hypersurfaces admitting a global null normal
sectioné on M. Before establishing the main result of this section we need to give some
definitions and results.
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Definition 1. Let M be a lightlike hypersurface of a Lorentzian manifold. A pair
(S(TM), &) is said to be a global structure dhiff & is a non-vanishing global null normal
(GNN) section orM.

One can find a large class of interesting examples of lightlike hypersurfaces admitting a
global structure. Suppod¢ is a time-oriented Lorentzian manifold ané smooth global
timelike vector field onM. Let M be a lightlike hypersurface in. Then,n restricted to
M is a global section oRad(TM) & tr(TM). Thus, the projection of|, onto Rad(TM)
provides a non-vanishing GNN section bh

Definition 2. Let M be a lightlike hypersurface of a Lorentzian manifaiiadmitting a
GNN sectiort onM. A Riemannian distributio®(7M) of TM is said to b&-distinguished
if each sectioWof D(TM) satisfiesvwé € I'(D(TM)). In particular, if a screen distribution
S(TM) is &-distinguished the pairS(TM), &) is called a distinguished structure bh

Let (S(TM),&) be a global structure oM. Consider the shape operator; :
r'(S(TM)) — I'(S(TM)) globally defined. FromLemma 1 we have that the eigenval-
ues respect t§ do not depend on the screen. Thus, we say that the eigenvaldesaoé
the principal curvaturesssociated with the GNN sectign

Proposition 4. Let(M, S(TM)) be a lightlike hypersurface of a Lorentzian manifaid
admitting a geodesic GNN sectigrnon M. Then S(TM) is &-distinguished if only if the
correspondingl-form t from (6) vanishesIn such casgthe Ricci tensor of the induced
connectionV is symmetric

Proof. Consider a vector fiel on M. Then, we have

T(X) = —(Vx& N) = (Vipyx)E N) = —(Vpgx)é N).

Thus,r = 0if and only ifgps(x)é € I'(S(TM)). Finally, it follows from[3, p. 99, Theorem
3.2]that the induced Ricci tensor is symmetric.

In fact, Theorem 3.2 iii3] establishes that given a screen distribut¥g@as), then the
Ricci tensor is symmetric if and only ifid= O for any chosen GNN sectidn Moreover,
Proposition 3.4 i3] ensures that for this case there exists a fiNV} on M such that
the corresponding 1-formvanishes. Bearing in mindroposition 4the conditiond = 0
allows us to find distinguished structure{TM), &) with & a geodesic GNN section. Now
we are trying to find more examples of lightlike hypersurfaces admitting distinguished
structures.

Theorem 5. Let M be a lightlike hypersurface in a Lorentzian manifélladmitting a
GNN sectiort. Suppose thaV:£ = —p& and {k1, ..., k,} are the principal curvatures
associated witl§ on M. Then there exist a uniqué-distinguished Riemannian distribution
D¢(TM) such that
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(i) If p#£k;foralli e {1,...,m}, we have the decomposition
™ = Rad(TM)J_Ds(TM),

and so(S(TM) = D:(TM), &) is a unique distinguished structure
(i) If p = k;, for someig € {1, ..., m}, we have the decomposition

TM = Rad(TM)LS,(TM) L Ds(TM),
whereS,(TM) is any eigenspace associated with the eigenvalaek;,.

Proof. SupposeS(TM) andS(TM) are two different screens. Lé&j,(TM) < S(TM) and
Sk(TM) < S(TM) be both vector subbundles associated with the same eigerkales
{E1, ..., E,} be a orthonormal basis 6f,(TM) and construct the s¢fq, ..., E,}, where
E; = Py(E;),1< j <r.FromLemma ] we have thatEs, ..., E,} is a orthonormal basis

of Sx(TM) satisfying the formulas
Vi€ = —kEj — t(E))E.
Vipé=—kEj—t(E)E 1=<j=<r (15)
Ej =E;+ unjé.

We are interested in finding; such thaﬁ(E,-) vanishes, so tha} (TM) is a&-distinguished
Riemannian distribution. Then, we have

Vi & = Vigt98 = Vié + 1jVek = —kEj — ©(E)§ — puj, —kE;
= —k(Ej + u€) (16)

and, thereforew ;(0 — k) = ©(E;). Accordingly, we obtain that ip # k, then it is enough
to takew ; = t(E;)/(p — k) and trivially Sx(TM) is unique witht = 0 on 7x(TM). Thus,
we have actually proved both statements taking

D(TM) = P Si(TM).
k#p

Note that ifk; £ p for all i, then @(TM), &) is a unique distinguished structure.
Observe thaTheorem Sorovides a large class of distinguished structures.
Definition 3. Let M be a lightlike hypersurface of a Lorentzian manifdld Then,M is

said to beotally non-geodesiif all principal curvatures associated with every local section
& € I'(Rad(TM)|y;) are non-zero everywhere.

Sufficient conditions for rescaling a GNN sectipto be a geodesic vector field are given
in [9, Section 4for lightlike hypersurfaces in spacetimes. We give some interesting results
whenM admits a geodesic GNN section.
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Corollary 1. Let M be a totally non-geodesic lightlike hypersurface in a Lorentzian mani-
fold M admitting a geodesic GNN sectigrnrhen there exista uniquég-distinguished screen
distribution In that casethe tidal forceR; is I"(S(TM))-valued if and only ifA y& = 0.

Proof. The existence of a uniqugdistinguished screen comes frohimeorem 5(i) It
remains to prove the second statement. {#&}; 1 < a < n} be an orthonormal basis of
eigenvectors ofi¢, from (11), we deduce

(Re(Eqa), N) = (R(Eq, §)§, N) = C(§, Az(Eq)) = ka(AN(§), Ea).

Ask, # 0 andS(TM) is non-degenerat®; is I'(S(TM))-valued iff Ay (&) = 0.

In particular, all totally non-geodesic lightlike hypersurface in a Lorentzian manifold of
constant curvature with a geodesic GNN seci@umit a unique&-distinguished structure
such thatd (&) = 0.

Example 1.Monge hypersurfaces ]Ri’*z. Consider a smooth functiaf : 2 — R, where
2 is an open set dR"*1, then

M = {(xo, e, x”+1) € RT’Z, X0 = F(xl, e, x”+1)}

is called a Monge hypersurface. It is easy to check that such a hypersurface is lightlike
hypersurface if and only i is a solution of the partial differential equation

n+1

> a(F)? =1, (17)
i=1

whered; = xﬁ We choose the radical and transversal vector bundles as those that are globally
spanned by

n+1 1 n+1
$=3o+zai(F)3i, N=2{—80+Zai(F)ai}~
i=1 i=1
The corresponding screen distribution is given{B, . .., W}, where
W, = an-'rl(F)ar - 8V(F)an+la l<r<n.

If we derive Eq.(17) with respect tox/, we obtain thath‘jl1 9;(F)9;;(F) = 0 for all
1< j<n+1andwe get

_ B n+1 n+1l /n+1
Vel = Vigor S (mi) (80 + z; ai(F)ai) =2 (Z ai(F)aff(F)) 9; =0,
i=

j=1 \i=1
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soé& is a geodesic GNN section. Furthermore, we are going to proveS{ia) spanned
by W, is &-distinguished.

n+1
VW, & = V(5,.11(F),— 3, (F)dns1) (30 + Z 3i(F)3i>
i—1

n+1

= (0n+1(F)3i(F) = 3,(F)dn41,i(F))3;.
i=1

Bearing in mind thabdy = 8,4 1(F)~1(W, + 8;(F)d,1) forall 1 < s < n, we have

€W,%— = Z(ars(F) - 8n—t—l(F)ilar(F)8n+1,s(F))VVS
s=1

+ > (Ors(F)5(F) = 0u11(F) " 05(F)3,(F)on41,5(F))n1
s=1

+(On+1(F)0rn+1(F) — 9-(F)9n41,n+1(F))9n+1

n

=Y (0rs(F) = 94 1(F) 10, (F)dn 41,5 (F) Wi, (18)
s=1

where we have made use of

Z(ars(F)as(F)) + 8n+l(F)8r,n—§—l(F) =0.
s=1

ThereforeﬁW,E € I'(S(TM)) and so is distinguished. Fro(i8), we can easily compute
the null mean curvaturéf; as follows

He = " (0rr(F) = 0p41(F) 1 0,(F)11,-(F))

r=1
n n+1
= Z 3rr(F) + 3n+l(F)718}1+1(F)8n+1,n+1(F) = Z aii(F)-
r=1 i=1

We list the following properties of Monge hypersurfaces, which will obviously hold for
M with a distinguished structure. For proofs $8eChapter 4]

(1) On alightlike Monge hypersurfadé of R’{*Z, there exists an integrable screen distri-
bution S(TN).

(2) Alightlike Monge hypersurfack of R’{*Z is a product manifold/ = L x M’,where
L is an open subset of a null line and is Riemannian.

(3) The geometry of a lightlike Monge hypersurfadeof RTZ essentially reduces to the
Riemannian geometry of a led’ of S(TM).
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Finally, we find integrability conditions of the screen distribution for a class of non-totally
geodesic lightlike hypersurfaces with non-zero null mean curvature.

Definition 4. Alightlike hypersurfacei, g) of a semi-Riemannian manifoIdZ(, g)issaid
to betotally umbilicalif for every local sectiort € I'(Rad(TM)|y) there exists a smooth
function p on/ such that

Be(X,Y) = pg(X.Y), VX,Y e I'(TM).

M is proper totally umbilicain M if the functionp is non-zero. Furthermore, this definition
is independent of the chosen screen distribufiGiiv).

Theorem 6. Let(M, S(TM)) be alightlike hypersurface of a Lorentzian manifaid Then
M is totally umbilical if and only if every sectidne I'(Rad(TM)|y) is a conformal killing
vector field ori4, that is L¢g = §2g, with £2 = —2p.

Proof. We obtain the result from a straightforward computation
= —2(A:X,Y). (19)

Then,Leg(X,Y) = 2g(X, Y) iff (2A:X+ 02X, Y)=0forall X,Y € I'(TM) iff A:X =
—(£2/2)PsX, so as pef3, p. 107, Eq. (5.3)]M is totally umbilical.

We refer[5, Chapters 5 and 6for a variety of examples of fluid spacetimes, with
metric (such as conformal Killing, homothetic and Killing) symmetries. Now we quote
the following general result for a proper totally lightlike submanifold.

Theorem 7 ([4]). Let(M, g, S(TM)) be a proper totally umbilical lightlike submanifold of
a semi-Riemannian manifo(@d/(c), g) of a constant curvature. Then the induced Ricci
tensor on M is symmetric if and only if its screen distribut&{fM) is integrable

By Corollary 1 a proper totally umbilical lightlike hypersurfadd with a geodesic
GNN sectiont admits a uniqué-distinguished screen. Furthermore, Psoposition 4M
also admits a symmetric Ricci tensor. Then, using above Duggal-Jin theorem we have the
following result.

Theorem 8. Let M be a proper totally umbilical lightlike hypersurface of a Lorentzian
manifold M (c) of constant curvature with a geodesic GNN secfoithen there exists a
unique integrablé&-distinguished screen distributia${7M) on M.

Now we are going to present a procedure to construct integrable screen distributions in
a larger class of lightlike hypersurfaces in Lorentzian manifolds. With this aim in mind we
need to recall a basic result.
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Lemma 3. Let c be avalue of a smooth functigh M — R, where M is a smooth manifald
If at each point off~1(c) = {p € M : f(p) = c} thedf, is non-zerpthen f~1(c) is a
submanifold of Mcalled a level hypersurface af f

In fact, if for all p € M, df, is non-zero, theihis a submersion ontg(M). It is well
known that the set of vectops of TM tangent to fibers are callecertical, denoted by
V(TM). Moreover,X € I'(V(TM)) iff d f(X) = 0. In particular, lett be a GNN section
and consider the lightlike mean curvatufe= He : M — Im(H) < R on M associated
with £ defined as the trace ofA¢, as a submersion function. It is well-known that the
points where the null mean curvature-iso are focal points (singularities) of the lightlike
hypersurfaces. We will not consider such points in our work. The following result ensures
that, under suitable conditions, we can always find a set of integrable screen distributions
by consideringH as a submersion.

Theorem 9 (Integrability conditions)Let(M, g) be alightlike hypersurface of a Lorentzian
manifold(M, g) admitting a geodesic GNN sectigrand satisfying the condition

12
RIC(, £) # —tracef?) — 75 (20)

for one (and so for all) geodesic GNN sectipon M. Then H = He : M — Im(Hg) C
R is a submersion andherefore M admits an integrable screen distributidfi(TM) =
WTM).

Proof. We must prove that |, # 0 for all p € M. For this, it is enough to prove that
there exists a vector in T, M such that &|,(v) # 0. By takingv = &, and using the
Raychaudhuri’'s equation, we get

2
dH,(£,) = £,(H) = —Ric(,. &) — tracep?) — @ .

Therefore, di, # 0 for all p if only if it is satisfied (20). As H is a submersion we take
S*(TM) = calV(TM), thenS*(TM) is Riemannian and clearly integrable.

Note that in this case for ap in M, there is am-dimensional integral submanifold
¥, = H Y(H(p)) such thatT, % = §5(TM). The preceding theorem provides a screen
distributionS*(TM) = V(TM) characterized by the property(Hg) = 0 for all sectionW
of S*(TM).

Corollary 2. Let(M, g) alightlike hypersurface of a spacetirie, g) admitting a geodesic
GNN sectiorg on M satisfying the null energy conditi®ic(, £) > 0. Let(S(TM), &) be a
distinguished structure on M satisfying the condition

Ric(W, &) = div(4:)(W), forall W e I'(S(TM)). (21)

Then,S(TM) is integrable.
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Proof. We take again the null mean curvatutie# 0 of M associated with the geodesic
GNN sectiort. Since Ricé, &) > 0, Eq.(20)is satisfied, and sH is a submersion. On the
other hand, §(TM), &) is distinguished witt§ a geodesic GNN section, $o= 0 onM, and
usingTheorem 4we have thaW(H) = O forall W € I'(S(TM)). The vertical vector fields
are characterized by this property, therefdt@M) = V(TM).
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